Unit 12 Nuclear Chemistry

Nuclear Chemistry- study of the structure of atomic nuclei and nuclear change.

Nuclear Reactions- isotopes of one element are changed into isotopes of another element.

Chemical Symbols

mass number =
$$14$$

atomic number = 6

Radioactive decay- when unstable nuclei lose energy by emitting radiation to attain more stable atomic configurations. Three types:

Alpha (α) decay- radioactive decay of an atomic nucleus that is accompanied by the emission of an alpha particle (${}^{4}_{2}$ He).

- **Beta** (β) decay- radioactive decay in which an electron $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$ is emitted. **Gamma** (γ) decay- high energy photons that are emitted by radioactive nuclei.
- Alpha particle has 2 protons and 2 neutrons, just like the ${}^{4}_{2}$ He nucleus. An α particle will decrease the atomic number by 2, decrease mass by 4, and
 carries a +2 charge.

$$^{2}_{8}{}^{1}_{4}{}^{0}Po \Rightarrow ^{2}_{8}{}^{0}_{2}{}^{6}Pb + ^{4}_{2}He$$

Beta particle is a fast moving electron, denoted by the symbol e^{-} or $_{-1}^{0}e^{-}$. A β -particle has insignificant mass, carries a -1 charge, and increases the atomic number by 1.

 ${}^{1}_{6}{}^{4}C \Rightarrow {}^{1}_{7}{}^{4}N + {}_{-01}e$

Gamma rays have no mass, do not carry a charge, and usually accompany α -and β -particles.

 $\frac{\text{Least}}{\text{Alpha}} \rightarrow \text{Beta} \rightarrow \text{Gamma}$

paper \rightarrow wood \rightarrow concrete

Nuclear Fission- splitting of a nucleus. A very heavy nucleus is split into 2 approximately equal fragments. Chain reaction releases several neutrons which split more nuclei.

 $^{2}_{9}{}^{3}_{2}{}^{6}$ U \rightarrow $^{1}_{5}{}^{4}_{6}{}^{1}$ Ba + $^{9}_{3}{}^{2}_{6}$ Kr + 2 x 10² kJ/mol

Nuclear Fusion - combining of nuclei. Two lighter nuclei combine to form a single heavier nucleus. Does not occur under standard conditions (+ repels +).

Advantages - inexpensive, no radioactive waste.

Disadvantages- requires huge amount of energy to start, difficult to control.

 ${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + n^{0} + 17.59 \text{ MeV}$

http://cnx.org/content/m42659/latest/?collection=col11406/latest

Half Life- time required for half of a radioisotope's nuclei to decay into its products.

For example, suppose you have 10.0 grams of strontium-90, which has a half life of 29 years. How much will be remaining after x number of years?

$mass_{final} = mass_{initial} \times (0.5)^n$ n = number of half-lives

Example problems

If gallium-68 has a half-life of 68.3 minutes, how much of a 160.0 mg sample is left:

after 1 half life?

Answer = 80.0 mg; $m_f = 160.0 \text{ mg } x (0.5)^1 = 80.0 \text{ mg}$

After 2 half lives?

Answer = 40.0 mg; $m_f = 160.0 \text{ mg } x (0.5)^2 = 40.0 \text{ mg}$

After 3 half lives?

Answer = 20.0 mg; $m_f = 160.0 \text{ mg x} (0.5)^3 = 20.0 \text{ mg}$

Assignment

Problem 1

Iodine-131 is a radioactive isotope with a half-life of 8 days. How many grams of a 64 g sample of iodine-131 will remain at the end of 8 days?

Problem 2

How many grams of a 64 g sample of iodine-131 will remain at the end of 32 days?

Problem 3

Complete the equation below by filling in the missing part:

${}^{2}_{8}{}^{2}_{8}{}^{6}Ra \rightarrow {}^{2}_{8}{}^{2}_{6}{}^{2}Rn + X$

what is X?

two neutrons? two protons? beta particle, ${}^{0}_{-1}$ e? alpha particle, ${}^{4}_{2}$ He?

Problem 4

Complete the equation below by filling in the missing part:

$^{2}_{9}{}^{3}_{3}{}^{9}Np \rightarrow ^{2}_{9}{}^{3}_{4}{}^{9}Pu + X$

What is the particle X? a positron? a neutro

a neutron?

alpha particle, ${}^{4}_{2}$ He? beta particle, ${}^{0}_{-1}$ e?

Alternate Assignment

Problem 1

Iodine-131 is a radioactive isotope with a half-life of 8 days. How many grams of a 64 g sample of iodine-131 will remain at the end of 8 days?

Problem 2

How many grams of a 64 g sample of iodine-131 will remain at the end of 24 days?

Problem 3

In the equation

$$^{2}_{8}{}^{2}_{8}{}^{6}Ra \rightarrow ^{2}_{8}{}^{2}_{6}{}^{2}Rn + X$$

what is X?

two neutrons? two protons? beta particle, ${}^{0}_{-1}$ e? alpha particle, ${}^{4}_{2}$ He?

Problem 4

In the nuclear change

$$_{93}Np^{239} \rightarrow _{94}Pu^{239} + X$$

What is X?

a proton? a neutron? a neutron? beta particle, ${}^{4}_{2}$ He? beta particle, ${}^{0}_{-1}$ e?