Unit 11 Thermochemistry

Energy - measure of the ability to cause change to occur, i.e. work.

Units of energy:

Joule (J) = newton x meter or J = N x m

Types of Energy - five main forms of energy:

Mechanical (Kinetic and Potential)

Chemical

Electromagnetic

Heat (Thermal)

Nuclear

Kinetic energy - energy of motion; depends on both mass and velocity; the faster an object moves, the greater the kinetic energy

Potential Energy- amount of energy that is stored.

3 types Elastic e.g. pulling a rubber band back and holding

Chemical e.g. burning a match

Gravitational e.g. boulder resting on top of a hill

Chemical energy - energy stored in the bonds of atoms and molecules

Electromagnetic Energy- a form of energy that is reflected or emitted from objects in the form of electrical and magnetic waves that can travel through space; moving electric charges.

Thermal Energy- internal energy or thermal energy of a substance is determined by the movement of the molecules and the potential energy of the arrangement of molecules.

Temperature - measure of the average kinetic energy of the molecules.

Heat (q) - energy transferred from a warmer substance to a colder one by the collisions of molecules.

Units of Thermal Energy: joule (J) or calorie (c).

calorie - amount of heat needed to raise 1 g of a substance 1 degree Celsius.

Calorie (food calorie, with a capital C) is 1000 cal (1 kcal)

1 cal = 4.18 joules or 1 kcal = 4180 J

Nuclear Energy -when the nucleus of an atom splits, nuclear energy is released. Nuclear energy is the most concentrated form of energy.

Law of Conservation of Energy- energy can be converted from one form to another, but it can neither be created nor destroyed.

Heat Energy - if a substance gets hotter, then something else must get colder. $heat_{lost} = heat_{gained}$

Temperature measures the average kinetic energy of the particles in a sample of matter:

Kinetic Energy = $\frac{1}{2}$ mv²

Methods of Energy Transfer

Energy transfer as heat can occur in 3 ways:

Conduction- transfer of energy as heat between particles as they collide with a substance or between 2 objects in contact.

Convection- transfer of energy by the movement of fluid with different temperature. **Convection current** - cycle of a heated fluid that rises and then cools and falls.

Radiation- transfer of energy by electromagnetic waves. This energy transfer does not need any matter since it travels in waves.

<u>Thermochemical Equation</u> - balanced, stoichiometric chemical equation that includes the enthalpy change, ΔH

Enthalpy ($\triangle H$) - transfer of energy in a reaction; change in heat.

$$\Delta H = H_{products} - H_{reactants}$$

$$H_{products} < H_{reactants}$$
, $\triangle H$ is negative $H_{products} > H_{reactants}$, $\triangle H$ is positive

Writing Thermochemical Equations

For example, Burning one mole of wax releases 20,000 kJ of heat energy.

This could be written as:

$$C_{40}H_{82} + 60.5 O_2 \rightarrow 40 CO_2 + 41 H_2O + 20,000 kJ$$

Instead we usually write:

$$C_{40}H_{82} + 60.5 O_2 \rightarrow 40 CO_2 + 41 H_2O$$

$$\Delta H = -20,000 \text{ kJ}$$

Example 1

Reacting 2 moles of solid sodium with 2 moles of water to produce 2 mole of aqueous sodium hydroxide and 1 mole of hydrogen gas will release 367 kJ of energy.

2Na (s) + 2 H₂O (l) → 2 NaOH (aq) + H₂ (g) + 367 kJ
or
2Na (s) + 2 H₂O (l) → 2 NaOH (aq) + H₂ (g)
$$\triangle H = -367 \text{ kJ}$$

Example 2

184.6 kJ of energy is needed to produce 1 mole of hydrogen gas and 1 mole of chlorine gas from 2 moles of hydrogen chloride gas.

2 HCl (g) + 184.6 kJ → H₂ (g) + Cl₂ (g)
or
2 HCl (g) → H₂ (g) + Cl₂ (g)
$$\triangle$$
H= +184.6 kJ

How to write Thermochemical equations using Standard Heat of Formations

$$C_2H_2(g) + 2 H_2(g) \rightarrow C_2H_6(g)$$
 $\Delta H_f^o \text{ (in kJ / mol)}$ $C_2H_2(g) = 226.7$ $C_2H_6(g) = 84.7$

Write the equation for the heat of formation of $C_2H_6(g)$

$$C_2H_2(g) + 2 H_2(g) \rightarrow C_2H_6(g)$$

1 mol of $C_2H_2(g)$ and 1 mol $C_2H_6(g)$

And

$$\Delta H_{rxn}^{\circ} = [\Delta H_{f products}^{\circ}] - [\Delta H_{f reactants}^{\circ}]$$

$$\Delta H_{rxn}^{\circ} = [C_2 H_6(g)] - [C_2 H_2(g)]$$

Therefore

$$\Delta H_{rxn}^{\circ} = [-84.7 \text{ kJ/mol}] - [226.7 \text{ kJ/mol}] = -331.4 \text{ kJ/mol}$$

Endothermic/ Exothermic equations

Exothermic reactions release heat from the system to the surroundings so the temperature will rise.

 $\triangle H^{\circ}$ will be **negative** because the reaction loses heat.

 ΔH° can be written into the chemical equation as a **product**.

Endothermic reactions absorb heat from the surroundings into the system so the temperature will decrease.

 ΔH° will be **positive** because the reaction absorbs heat.

 $\triangle H^{\circ}$ can be written into the chemical equation as a **reactant**.

Example 3

How much energy does it take to raise the temperature of 50 g of aluminum ($c_p = 0.9025 \text{ J/g}^{\circ}\text{C}$) by 10°C?

Using Q = m x
$$c_p$$
 x $(T_f - T_i)$ Q = (50g) (0.9025 J/g°C) (10°C)
Q = 451.3 J

Example 4

If we add 30 J of heat to lead ($c_p = 0.1276 \text{ J/g}^{\circ}\text{C}$) with a mass of 10 g, how much will its temperature increase?

Using Q = m x c_p x
$$\triangle$$
T 30J = (10g) (0.1276 J/g°C) (\triangle T)
23.5 °C = \triangle T

Calorimetry - science of measuring the heat of chemical reactions or physical changes. To do calorimetry, heat of combustion and mass must be given OR during a calorimetry procedure, the heat released during a chemical or physical change is transferred to another substance, such as water, which undergoes a temperature change.

Example 5

Propane is a commonly used fuel. 1 mol of C_3H_8 releases 2,220 kJ of heat during combustion. The molar mass of C_3H_8 is 44.1 g/mol. How much heat is released if a firework contains 67.8 g of C_3H_8 ?

1st step: convert grams C₃H₈ to moles C₃H₈

67.8 g
$$C_3H_8$$
 1 mol C_3H_8
 $x = 1.54 \text{ mol } C_3H_8$
44.1 g C_3H_8

2nd step: use the heat of combustion of propane to calculate energy (heat) released

1.53 mol
$$C_3H_8$$
 2,220 kJ $x = 3413.06 \text{ kJ}$ $\therefore >3410 \text{ kJ released}$ 1 mol

For heat transferred to another object, the equation is: $-Q_1 = Q_2$ One will be losing energy $(-Q_1)$, the other will be gaining energy (Q_2) .

Example 6

175 grams of hot aluminum (100°C) is dropped into an insulated cup that contains 40.0 mL of ice cold water (0°C). Determine the final temperature, T_f

1st set up expressions for energy released and energy absorbed.

$$- Q_1 = - (175 \text{ g}) (0.900 \text{ J/g}^{\circ}\text{C}) (T_f - 100^{\circ}\text{C})$$
 for aluminum
$$Q_2 = (40.0 \text{ g}) (4.184 \text{ J/g}^{\circ}\text{C}) (T_f - 0.0^{\circ}\text{C})$$
 for cold water

2nd put the expressions together, i.e. -
$$Q_1 = Q_2$$

- (175 g) (0.900 J/g°C) (T_f -100°C) = (40.0 g) (4.184 J/g°C) (T_f -0°C)

$$3^{rd}$$
 solve for T_f

$$-157.5 (T_f - 100^{\circ}C) = 167.4 (T_f - 0.0^{\circ}C)$$

$$-157.5 T_f + 15750$$
°C = 167.4 T_f

$$15750^{\circ}\text{C} = 324.9 \text{ T}_{\text{f}} \quad \therefore \text{ T}_{\text{f}} = 48.5^{\circ}\text{C}$$