Unit 7 Stoichiometry

Stoichiometry- calculating quantities in a chemical reaction.

	H_2	(g)	$+I_2$	(g)	→ 2HI (g)
particles (atoms)	2	+	2	=	4
mass (molar)	2g	+ 2	54g	=	256g
molar volume	22.4	4L + 2	22.4I	2 = 4	4.8L
moles	1	+	1	=	2

$N_{2}(g) + 3H_{2}(g) - 2NH_{3}(g)$

particles (atoms)	2 +	6	= 8	
mass (molar)	28g	+	6g =	34g
molar volume	22.4L	+	67.2L	≠ 44.8L
moles	1 +	3	≠ 2	

Note: only mass and particles (number of atoms) are conserved in ALL reactions.

	$\mathbf{H}_{2}\left(\mathbf{g}\right)+\mathbf{I}_{2}$	$(g) \rightarrow 2HI (g)$	
moles	1 + 1	= 2	
mole ratios	1 mol H ₂	2 mol HI	1 mol I ₂
	$1 \text{ mol } I_2$ or	1 mol H_2 or	2 mol HI

moles	1 +	3	≠	2		
mole ratios	1 mol N ₂			5		2
	3 mol H ₂	•-		N ₂	•-	$\frac{1}{2 \text{ mol NH}_3}$

Problem:

How many moles of H_2 are needed to produce 6 moles of NH_3 ?

Example 1. How many moles of ammonia are produced when 0.6 moles of nitrogen reacts with hydrogen? $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

Example 2. How many moles of aluminum are needed to form 3.7 moles of aluminum trioxide?

$$4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$$

$$3.7 \text{ mol Al}_2 \Theta_3 \qquad 4 \text{ mol Al} \\ ------- X \qquad ------ = 7.4 \text{ mol Al} \\ 2 \text{ mol Al}_2 \Theta_3$$

Example 3. Calculate the number of grams of ammonia produced by the reaction of 5.4 g of hydrogen with an excess of nitrogen. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

Step 1. Convert grams to moles.

$$\frac{5.4 \text{ gH}_2}{-----} X \frac{1 \text{ mol } \text{H}_2}{2 \text{ gram } \text{H}_2} = 2.7 \text{ moles } \text{H}_2$$

Step 2. Convert moles reactant to moles product. $\begin{array}{rcl}
2.7 & \text{mol H}_2 \\
\hline & & \\
\end{array} & X \\
\hline & & \\
3 & \text{mol H}_2
\end{array} = 1.8 & \text{mol NH}_3$

Step 3. Convert moles back to grams.

Example 4. How many molecules of oxygen are produced when a sample of 29.2g of water is decomposed by electrolysis? $2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$

tep 1. Convert grams to moles.

$$\frac{29.2 \text{ g H}_2 \Theta}{-----} X \frac{1 \text{ mole H}_2 O}{18 \text{ g H}_2 \Theta} = 1.62 \text{ mol H}_2 O$$

S

Step 2. Convert moles reactant to moles product. $\begin{array}{r}
1.62 \text{ mol H}_2 \Theta \\
\hline & & \\
\end{array} X \begin{array}{r}
1 \text{ mole } O_2 \\
\hline & & \\
2 \text{ mol H}_2 \Theta \end{array} = 0.81 \text{ mol } O_2
\end{array}$

Step 3. Convert moles product to molecules product. $\begin{array}{rcl}
0.81 & \text{mol} \ \Theta_2 & 6.02 & 10^{23} & \text{molecules} \ O_2 \\
\hline & & X & \hline & & 1 & \text{mol} \ \Theta_2 \\
\end{array} = 4.9 & x & 10^{23} & \text{molecules} \ O_2 \\
\hline & & 1 & \text{mol} \ \Theta_2
\end{array}$

Example 5. Assuming STP, how many liters of oxygen are needed to produce 19.8 liters SO₃ ?

 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$

Step 1. Convert volume to moles $\frac{19.8 l \text{ SO}_3}{22.4 l} = 0.884 \text{ mol SO}_3$

Step 2. Convert moles product to moles reactant $\begin{array}{rcl}
0.884 & \operatorname{mol} & SO_3 & 1 & \operatorname{mol} & O_2 \\
& & & & & & \\
\end{array} & X & & & & \\
\end{array} & = & 0.442 & \operatorname{mol} & O_2 \\
& & & & & & \\
\end{array}$ Step 3. Convert moles to volume $\begin{array}{rcl}
0.442 & \operatorname{mol} & O_2 & 22.4 & l \\
& & & & & \\
\end{array}$ $\begin{array}{rcl}
0.442 & \operatorname{mol} & O_2 & 22.4 & l \\
& & & & & \\
\end{array}$ $\begin{array}{rcl}
1 & \operatorname{mol} & & \\
\end{array}$

Example Problems done in one line/one step

Example 3.

Calculate the number of grams of ammonia produced by the reaction of 5.4 g of hydrogen with an excess of nitrogen.

$$N_{2}(g) + 3H_{2}(g) \rightarrow 2NH_{3}(g)$$

Example 4.

How many molecules of oxygen are produced when a sample of 29.2 g of water is decomposed by electrolysis?

 $2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$

Example 5.

Assuming STP, how many liters of oxygen are needed to produce 19.8 liters SO₃?

$$2\mathrm{SO}_2(g) + \mathrm{O}_2(g) \rightarrow 2\mathrm{SO}_3(g)$$

 $\frac{19.8 \, l \, \text{SO}_3}{22.4 \, l} \times \frac{1 \, \text{mol}}{22.4 \, l} \times \frac{1 \, \text{mol} \, \text{O}_2}{2 \, \text{mol} \, \text{SO}_3} \times \frac{22.4 \, l}{1 \, \text{mol}} = 9.9 \, l \, \text{O}_2$

Limiting Reagent and Percent Yield

Theoretical yield- amount of product (maximum) that could be formed in a reaction.

Actual yield- how much product is actually produced.

Percent yield- how much product is produced compared to how much was expected.

(Actual yield) Percent Yield = _____ x 100

(Theoretical yield)

Limiting Reagent- the first substance used up in an experiment; i.e. completely reacted.

Excess reagent- the substance left over in an experiment, i.e. did not completely react.

Example Problem: If we start with 6.70 mol Na and 3.20 mol Cl_2 what is the limiting reagent?

 $2Na(s) + Cl_2 \rightarrow 2 NaCl$

2 mol Na

Since 3.35 mol Cl_2 is required to react with 6.70 mol Na, Cl_2 is the limiting reagent and Na is the excess reagent.

> $3.20 \text{ mol } \text{Cl}_2 \qquad 2 \text{ mol } \text{Na} \\ ----- X \qquad = 6.40 \text{ mol } \text{Na}$ $1 \text{ mol } \text{Cl}_2$

Since Cl_2 is limiting, the theoretical yield is 6.40 mol NaCl = 374.4g.

If only 337g was produced, what is the percent yield?

337g Percent Yield = _____ x 100 = 90% 374.4g