Unit 7 Stoichiometry

Stoichiometry- calculating quantities in a chemical reaction.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

particles (atoms) $2+2=4$
mass (molar) $2 \mathrm{~g}+254 \mathrm{~g}=256 \mathrm{~g}$
molar volume
moles
$1+1=2$

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

particles (atoms) $2+6=8$
mass (molar) $28 \mathrm{~g}+6 \mathrm{~g}=34 \mathrm{~g}$
molar volume $22.4 \mathrm{~L}+67.2 \mathrm{~L} \neq 44.8 \mathrm{~L}$
moles
$1+3 \neq 2$
Note: only mass and particles (number of atoms) are conserved in ALL reactions.
moles
mole ratios
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow \mathbf{2 H I}(\mathrm{g})$
$1+1=2$
$\mathrm{N}_{\mathbf{2}}(\mathrm{g})+\mathbf{3} \mathrm{H}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{2} \mathrm{NH}_{\mathbf{3}}(\mathrm{g})$
moles $1+3 \neq 2$
mole ratios $\frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{3 \mathrm{~mol} \mathrm{H}_{2}}$ or $\frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{~N}_{2}}$ or $\frac{3 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}$

Problem:

How many moles of H_{2} are needed to produce 6 moles of NH_{3} ?

Unit 7 Stoichiometry More sample problems
Example 1. How many moles of ammonia are produced when 0.6 moles of nitrogen reacts with hydrogen?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$2 \mathrm{~mol} \mathrm{NH}_{3}$

$$
\cdots \quad \mathrm{Z} \frac{}{1 \mathrm{molNz}_{z}}=1.2 \mathrm{~mol} \mathrm{NH}_{3}
$$

Example 2. How many moles of aluminum are needed to form 3.7 moles of aluminum trioxide?
$4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathbf{2 \mathrm { Al } _ { 2 } \mathrm { O } _ { 3 } (\mathrm { s })}$
$3.7 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$ 4 mol Al
X $\frac{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}{}=7.4 \mathrm{~mol} \mathrm{Al}$
Example 3. Calculate the number of grams of ammonia produced by the reaction of 5.4 g of hydrogen with an excess of nitrogen.

$$
\mathbf{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{NH}_{3}(\mathrm{~g})
$$

Step 1. Convert grams to moles.

$$
\stackrel{5.4 \mathrm{~g} \mathrm{H}_{z}}{ } \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2{\text { gram } \mathrm{H}_{z}}^{2}}=2.7 \text { moles } \mathrm{H}_{2}
$$

Step 2. Convert moles reactant to moles product.

$$
\stackrel{2.7 \mathrm{~mol} \mathrm{H}_{z}}{ } \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}}=1.8 \mathrm{~mol} \mathrm{NH}_{3}
$$

Step 3. Convert moles back to grams.

$$
\xlongequal{1.8 \mathrm{~mol} \mathrm{NH}_{3}} \times \frac{17 \mathrm{~g} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{NH}_{3}}=31 \mathrm{~g} \mathrm{NH}_{3}
$$

Example 4. How many molecules of oxygen are produced when a sample of 29.2 g of water is decomposed by electrolysis?

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Step 1. Convert grams to moles.
$29.2 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \quad 1$ mole $\mathrm{H}_{2} \mathrm{O}$

$$
\ldots \mathrm{X} \frac{}{18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=1.62 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

Step 2. Convert moles reactant to moles product.

Step 3. Convert moles product to molecules product.
$0.81 \mathrm{~mol}_{\mathrm{z}}$

6.02×10^{23} molecules O_{2}

Example 5. Assuming STP, how many liters of oxygen are needed to produce 19.8 liters SO_{3} ?

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{SO}_{3}(g)
$$

Step 1. Convert volume to moles

$$
\frac{19.8 l \mathrm{SO}_{3}}{} \times \frac{1 \mathrm{~mol}}{22.4 l}=0.884 \mathrm{~mol} \mathrm{SO}_{3}
$$

Step 2. Convert moles product to moles reactant
$0.884 \mathrm{~mol} \mathrm{SO}_{3} \quad 1 \mathrm{~mol} \mathrm{O}_{2}$

$$
\ldots \mathrm{X} \frac{2}{2 \mathrm{~mol} \mathrm{SO}_{3}}=0.442 \mathrm{~mol} \mathrm{O}_{2}
$$

Step 3. Convert moles to volume

$$
\stackrel{0.442 \mathrm{mot} \mathrm{O}_{2}}{ } \times \frac{22.4 l}{1 \mathrm{~mol}}=9.9 l \mathrm{O}_{2}
$$

Example 3.
Calculate the number of grams of ammonia produced by the reaction of 5.4 g of hydrogen with an excess of nitrogen.

Example 4.
How many molecules of oxygen are produced when a sample of 29.2 g of water is decomposed by electrolysis?

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

29.2 $\mathrm{g} \mathrm{H}_{2} \mathrm{O} \quad 1$ mole $\mathrm{H}_{2} \mathrm{O} \quad 1$ mole $\mathrm{O}_{2} \quad 6.02 \times 10^{23}$ molecules O_{2}

Example 5.
Assuming STP, how many liters of oxygen are needed to produce 19.8 liters SO_{3} ?

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{SO}_{3}(g)
$$

$$
\frac{19.8 l \mathrm{SO}_{3}}{} \times \frac{1 \mathrm{~mol}}{22.4 l} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{SO}_{3}} \times \frac{22.4 l}{1 \mathrm{~mol}}=9.9 l \mathrm{O}_{2}
$$

Limiting Reagent and Percent Yield

Theoretical yield- amount of product (maximum) that could be formed in a reaction.
Actual yield- how much product is actually produced.
Percent yield- how much product is produced compared to how much was expected.

(Actual yield)
 Percent Yield $=$ x 100
 (Theoretical yield)

Limiting Reagent- the first substance used up in an experiment; i.e. completely reacted.
Excess reagent- the substance left over in an experiment, i.e. did not completely react.

Example Problem: If we start with 6.70 mol Na and $3.20 \mathrm{~mol} \mathrm{Cl}_{2}$ what is the limiting reagent?

$$
2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}
$$

$6.70 \mathrm{~mol} \mathrm{Na} \quad 1 \mathrm{~mol} \mathrm{Cl}_{2}$
$\longrightarrow \quad$ X $\overline{2 \mathrm{~mol} \mathrm{Na}}=3.35 \mathrm{~mol} \mathrm{Cl}_{2}$

Since $3.35 \mathrm{~mol} \mathrm{Cl}_{2}$ is required to react with $6.70 \mathrm{~mol} \mathrm{Na}, \mathrm{Cl}_{2}$ is the limiting reagent and Na is the excess reagent.

Since Cl_{2} is limiting, the theoretical yield is $6.40 \mathrm{~mol} \mathrm{NaCl}=374.4 \mathrm{~g}$.
If only 337 g was produced, what is the percent yield?

$$
\text { Percent Yield }=\frac{337 \mathrm{~g}}{374.4 \mathrm{~g}} \times 100=90 \%
$$

